Publication Date: June 24, 2024
Authors: Brett Min, Nicholas Anto-Sztrikacs, Marlon Brenes, and Dvira Segal
Abstract:
Dissipative processes can drive different magnetic orders in quantum spin chains. Using a nonperturbative analytic mapping framework, we systematically show how to structure different magnetic orders in spin systems by controlling the locality of the attached baths. Our mapping approach reveals analytically the impact of spin-bath couplings, leading to the suppression of spin splittings, bath dressing and mixing of spin-spin interactions, and emergence of nonlocal ferromagnetic interactions between spins coupled to the same bath, which become long ranged for a global bath. Our general mapping method can be readily applied to a variety of spin models: we demonstrate (i) a bath-induced transition from antiferromagnetic (AFM) to ferromagnetic ordering in a Heisenberg spin chain, (ii) AFM to extended Neel phase ordering within a transverse-field Ising chain with pairwise couplings to baths, and (iii) a quantum phase transition in the fully connected Ising model. Our method is nonperturbative in the system-bath coupling. It holds for a variety of non-Markovian baths and it can be readily applied towards studying bath-engineered phases in frustrated or topological materials.
Related links: