
The third biennial John Stewart Bell Prize for Research on Fundamental Issues in Quantum Mechanics and Their Applications is awarded to
Michel Devoret and
Robert Schoelkopf, Professors of Applied Physics at Yale University, USA, for fundamental and pioneering experimental advances in entangling superconducting qubits and microwave photons, and their application to quantum information processing.
John Bell’s discovery that
entanglement had experimentally testable consequences opened a new experimental
field in which the boundaries of validity of quantum mechanics would be explored
as far as current technology would permit. One new direction was proposed at the
beginning of the 80’s by Tony Leggett (recipient of the 2003 Nobel Prize in
Physics): test the application of
quantum mechanics to collective electrical variables of radiofrequency
circuits, like macroscopic currents and voltages. In circuits that are purely
linear, like an inductancecapacitance (LC) harmonic oscillator, the difference
between classical and quantum behavior is very subtle and is hard to observe if
one does not introduce a nonlinear element. Leggett suggested that a Josephson
junction should be used. According to theory, the Josephson effect provides a
nonlinear inductance which is nondissipative when the temperature is reduced
well below the superconducting gap.
Pioneering experiments performed at UC Berkeley
in 198384 in John Clarke's lab by Devoret and John Martinis demonstrated that a
Josephson junction can indeed behave as an artificial atom, possessing quantum
energy levels which can be excited by microwave light. One can view a Josephson
tunnel junction as a sort of onedimensional atom, with the phase of the
junction being the position of the electron and the Josephson “washboard”
potential playing the role of the Coulomb potential. The transition frequencies
of the Josephson atom are about 100,000 times smaller than a microscopic atom,
so instead of falling in the visible or ultraviolet light domain, they lie in
the GHz range (microwave radiation). However, the scaling of the quality factor
of the transition (ratio of the center frequency to the linewidth) did not
appear favorable at first. Even when Yasunobu Nakamura, Yuri Pashkin and Jaw
Shen Tsai at NEC Tsukuba in Japan realized the first measurement of the Rabi
oscillations associated with the transition between two Josephson levels in the
“Cooper pair box” configuration, which had been developed by Devoret, Daniel
Esteve and Cristian Urbina and colleagues at Saclay, France, these manmade
solidstate systems seemed many orders of magnitude less coherent than their
natural counterparts like real atoms. The prospects looked suddenly much more
promising when the Saclay team
observed Ramsey
interference fringes in a new configuration protecting the Josephson junction
from the measurement circuit (“quantronium” artificial atom). That experiment
showed that the quality factor of superconducting artificial atoms could be
improved by more than two orders of magnitude, greatly enhancing the prospects
for using these devices as quantum bits (or “qubits”) for information
processing.
In 2004, Schoelkopf’s group and collaborators at Yale, including
the theory group of Steve Girvin, further developed the parallels between
superconducting circuits and atomic physics by introducing the concepts and
techniques known as circuit quantum electrodynamics
(“circuit QED”). In this new paradigm, Josephsonjunction qubits are coupled to
only to microwave photons in a superconducting cavity, and all measurement and
control of the circuit is achieved with radiofrequency signals. These
techniques allow faster, more precise, and higher signal to noise ratio
measurements of superconducting quantum devices. Circuit QED can also go beyond
traditional quantum optics and cavity QED with real atoms and photons in some
regards. It allows, for instance, vastly stronger couplings between light and
matter, and enabled the Yale group to reach a new regime of strong dispersive
coupling (previously only possible in Rydberg atom cavity QED), where the
presence of a single excitation in either the qubit or the cavity shifts the
frequency of its counterpart by many (up to 1,000 or more) linewidths. Using
this capability, experimenters today make, measure, and manipulate single
microwave photons and generate nonclassical states of light in superconducting
circuits. Schoelkopf’s group demonstrated the generation of single gigahertz
photons on demand in 2007, and the nondemolition measurement of photons in a
cavity in 2010. The creation of complex states of light in circuit QED, by
superposing many individual photons, was accomplished by the team of Andrew
Cleland and John Martinis at UC Santa Barbara in 2008.
The strong coupling of
qubits and photons in circuit QED also enables many applications in quantum
computation. In 2007 the Yale group used microwave photons, guided by
superconducting wires, as a “quantum bus” to connect qubits on opposite sides of
a chip. They extended this work in 2009 to realize the first solidstate quantum
processor, performing twoqubit (Grover and DeutschJosza) quantum algorithms.
In parallel with the Martinis group at UCSB, they also announced a violation of
Bell’s inequalities for superconducting qubits, definitively demonstrating
entanglement in these manmade
systems. More recently, the Yale team has continued this work to observe
threequbit entanglement (via violation Mermin’s extension of the Bell
inequalities), and demonstrate the first quantum error correction (QEC) in a
solidstate device.
Meanwhile, there have also been huge advances in
the capability for quantum measurement with superconducting systems. As with
atoms, quantum jumps between energy levels of qubits and photons can be observed
with high signaltonoise ratio using Josephson amplifiers developed in the lab
of Devoret (who moved to Yale in 2002) in collaboration with Schoelkopf. The
fact that thousands of bits of information can now be extracted from a qubit
during its coherence lifetime opens new quantum measurements avenues like the
stabilization of states and error correction by continuous feedback, which might
be easier than with natural atoms.
Over the last decade or so, the Yale
collaboration of Devoret and Schoelkopf has been a leader in the development of
new superconducting qubit designs, and in the improving lifetimes of quantum
states and quantum information in these systems. During this time frame, the
field has seen coherence times improve about a factor of ten every three years,
undergoing a remarkable “Moore’s law” type of growth by almost six orders of
magnitude. Today coherence times are approaching the socalled error correction
threshold, implying that workable quantum error correction and scalable quantum
computing may soon be possible.
The achievements of the new field of
superconducting quantum circuits, fostered by the Yale collaboration, and now
practiced in many labs around the world, have opened a new platform for
experiments in quantum physics. In a way that is similar to how conventional
electronic circuits are built from individual components, one can now construct
novel, complex quantum systems built from modular parts. These systems can
perform signal processing functions at the level of individual quanta, and
perhaps one day allow quantum computing to become a practical reality.
Main references to the work for which the prize is awarded
1) ‘Strong Coupling of a Single Photon to a Superconducting Qubit Using Circuit Quantum
Electrodynamics,’ A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.S. Huang,
J. Majer, S. Kumar, S.M. Girvin, and R.J. Schoelkopf, Nature 431, pp. 162167
(2004).
2) ‘Resolving Photon Number States in a Superconducting Circuit,’ D.I. Schuster,
A.A. Houck, J.A. Schreier, A. Wallraff, J. Gambetta, A. Blais, L. Frunzio, B.
Johnson, M.H. Devoret, S.M. Girvin, and R.J. Schoelkopf, Nature 445, pp. 515518
(2007).
3) ‘Demonstration of TwoQubit Algorithms with a Superconducting Quantum
Processor,’ L. DiCarlo, J. M. Chow, J. M. Gambetta, Lev S. Bishop, D. I.
Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf,
Nature 460, pp. 240244 (2009).
4) ‘Phasepreserving amplification near the quantum limit with a Josephson ring
modulator,’ N. Bergeal, F. Schackert, M. Metcalfe, R. Vijay, V. E. Manucharyan,
L. Frunzio, D. E. Prober, R. J. Schoelkopf, S. M. Girvin, M. H. Devoret, Nature
465, pp. 6468 (2010).
5) ‘Observation of High Coherence in Josephson Junction Qubits Measured in a
ThreeDimensional Circuit QED Architecture,’ H. Paik, D.I. Schuster, L.S.
Bishop, G. Kirchmair, G. Catelani, A.P. Sears, B.R. Johnson, M.J. Reagor, L.
Frunzio, L.I. Glazman, M.H.Devoret, and R.J. Schoelkopf, Physical Review Letters
107, 240501 (2011).
6) ‘Quantum BackAction of an Individual VariableStrength Measurement,’ M.
Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, K.M.
Sliwa, B. Abdo, L. Frunzio, S.M. Girvin, R.J. Schoelkopf, and M.H. Devoret,
Science 339, pp. 178181 (2013).
Further related reading:
Review articles on superconducting qubits
1) ‘Quantum Mechanics of a Macroscopic
Variable: the Phase Difference of a Josephson Junction,’ J. Clarke, A.N.
Cleland, M.H. Devoret, D. Esteve, J.M. Martinis, Science 239, pp. 992997
(1988).
2) ‘Superconducting Quantum Bits,
John Clarke and Frank K. Wilhelm, Nature 453, pp. 10311042
(2008).
3) ‘Superconducting Circuits for Quantum Information: An Outlook,’
M.H. Devoret and R.J. Schoelkopf,
Science 339, pp. 11691174 (2013).
On cavity QED and circuitQED
4) ‘Exploring the Quantum: Atoms, Cavities, and Photons,’ by S.
Haroche and J.M. Raimond, (Oxford Univ. Press, 2006).
5) ‘Wiring Up Quantum Systems,’ R.J. Schoelkopf and S.M. Girvin, Nature 451, pp.
664669 (2007).
On amplifiers and quantum measurement
6) see for example the 2012 Nobel lectures by S. Haroche and D. Wineland at http://www.nobelprize.org/nobel_prizes/physics/laureates/2012/
7) ‘Introduction to Quantum Noise, Measurement, and Amplification,’ A.A.
Clerk, M.H. Devoret, S.M. Girvin, F. Marquardt, and R.J. Schoelkopf, Reviews of
Modern Physics 82, pp. 11551208 (2010).
8) ‘NonDegenerate, ThreeWave Mixing with the Josephson Ring Modulator,’ B. Abdo, A. Kamal, and
M.H. Devoret
Physical Review B 87, 014508 (2013).
